The Linux Luminarium: Learning Linux by Leveraging
Lightweight Labs and Ludicrous Lessons

Yan Shoshitaishvili
Arizona State University
USA
yans@asu.edu

Abstract

Learning Linux typically demands initial setup overhead, creating
a paradox where newcomers must already somewhat understand
Linux environments to effectively learn about them. To address
this challenge, we developed an online interactive learning curricu-
lum explicitly designed to eliminate the barrier of manual setup.
Our approach divides core Linux concepts into small, focused chal-
lenges, enabling incremental mastery through active practice. Be-
yond traditional exercises, we introduce intentionally playful and
even destructive scenarios, such as compromising security, deploy-
ing forkbombs, and executing “doomsday” commands like rm -rf /
to solidify understanding through memorable experiences. These
“shenanigan” challenges not only reinforce technical skills but in-
still the system consequences of mismanagement, highlighting the
flexibility, power, and potential pitfalls of Linux environments in
an engaging, experiential manner.

CCS Concepts

« Applied computing — Education; Interactive learning envi-
ronments.

Keywords
Linux Education, Tutoring

ACM Reference Format:

Yan Shoshitaishvili, Adam Doupé, and Connor Nelson. 2026. The Linux
Luminarium: Learning Linux by Leveraging Lightweight Labs and Ludicrous
Lessons. In Proceedings of the 57th ACM Technical Symposium on Computer
Science Education V.1 (SIGCSE TS 2026), February 18-21, 2026, St. Louis, MO,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3770762.
3772655

1 Introduction

A journey of a thousand miles begins with a single step, and jour-
neys in Computer Science Education must often start with the ba-
sics of a computer environment. The choice of environment varies
across educational institutions: some standardize on Windows, oth-
ers on Linux, and some adopt emerging web technologies to obviate
the need for students to be proficient with an operating system at
all.

Large swaths of the Computer Science curriculum at our uni-
versity expect Linux knowledge from the students, but until this

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCSE TS 2026, St. Louis, MO, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2256-1/26/02

https://doi.org/10.1145/3770762.3772655

Adam Doupé

Arizona State University

doupe@asu.edu

Connor Nelson

Arizona State University
USA
connor.d.nelson@asu.edu

work, our curriculum had no actual Linux education. The lack of a
structured Linux curriculum hampered students throughout their
entire Computer Science journey [12] and increased load on the
instructional staff as surprisingly elementary gaps in student un-
derstanding made themselves apparent distressingly late in the
curriculum.

This paper describes the novel platform that we developed to
solve this problem: the Linux Luminarium. Inspired by the emer-
gence of a new paradigm in cybersecurity education [17] in 2024,
we developed the Linux Luminarium as a turnkey (e.g., no setup
required), structured, challenge-based learning resource. The Linux
Luminarium comprises 108 challenges spread across 15 topical
sub-modules, spanning from initial introductions of the concept
of a command line all the way to relatively advanced challenges
exploring the Linux security model.

To maximize its utility in learning, the Linux Luminarium in-
troduces several novel features not seen in other Linux education
platforms, including intensive shell instrumentation to give learners
in-band guidance and feedback, mechanisms to anticipate, detect,
and correct learner errors in real-time before frustration can build,
and challenge randomization to support repeated exploration of
Linux concepts.

We opened Linux Luminarium to the public on May 1, 2024,
and as of July 1, 2025 have educated 15,394 learners (both at our
University and beyond) through a cumulative 697,553 successful
challenge solves. We also deployed Linux Luminarium as a module
in a required Junior-year course in Computer Science at our large
R1 public University, anecdotally observing a significant reduction
in downstream learner issues involving Linux.

To evaluate the Linux Luminarium’s efficacy in education, we
carried out two surveys (both evaluated by our institution’s IRB and
determined to be Exempt), one gathering feedback from 47 learners
from outside of our University and one surveying 405 of our Junior-
year students. Both surveys show that the Linux Luminarium is an
effective teaching tool, addressing issues that frustrated learners’
pre-Linux Luminarium attempts at learning Linux and improving
their Linux knowledge. Furthermore, the results show that our
innovations, in particular, help make this possible.

Our goal is for the Linux Luminarium to become a de-facto
platform for Linux-curious learners around the world to get started
on their computing journey. To this end, the Linux Luminarium is
not only freely available to access for anyone, but also open source,
along with all platform components, enabling ongoing research
and development by the community.

2 Design

Several goals drove our creation of the Linux Luminarium:

https://doi.org/10.1145/3770762.3772655
https://doi.org/10.1145/3770762.3772655
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3770762.3772655

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

Minimal device requirements. We aimed to be accessible to peo-
ple of diverse backgrounds, including those without regular
access to a development- or virtualization-capable computer.

Minimal prerequisites. Ideally, learners would be able to ap-
proach the Linux Luminarium with minimal technical knowl-
edge (e.g., just understanding how to use a web browser).
We explicitly aimed to avoid assuming that users understood
file systems, processes, source code, executables, and almost
everything else.

Minimal conceptual leaps. Given the lack of familiarity with
the concept, we strove to decompose the Linux learning
problem into a series of tiny steps that build up to significant
knowledge.

Guardrails. As experienced educators, we have observed a stag-
gering number of ways that learners can misguide them-
selves. We attempted to create an environment in which
learners had freedom to explore while minimizing the chance
of learning-derailing mistakes.

Engagement. We aimed to keep learners motivated through regu-
lar positive feedback reinforcement and community involve-
ment.

With these goals in mind, we chose our pwn.college DOJO plat-
form [17] for the Linux Luminarium’s infrastructure. The DOJO
provides an open-source, web-accessible Linux environment in
which instructors can implement assignments, exposes advanced
instrumentation for instructor use, and makes security guaran-
tees that maintain educational integrity of assignments in the face
of too-clever students. We adopted the Capture-the-Flag-inspired
PWN philosophy [18], which envisions using hands-on challenges,
that gradually increase in complexity, to teach successive "micro-
concepts". For this, we broke concepts into micro-components and
conveyed each component through an individual, small challenge
that, in aggregate with other challenges, gradually builds up un-
derstanding of the concept. We augmented this platform and phi-
losophy with a number of innovations specific to first-stage Linux
education and implemented an extensive curriculum, all described
below.

2.1 Instrumented Learning

The DOJO platform gives assignment authors significant control
over the learner’s web-accessible working environment. We used
this flexibility to implement a number of novel instrumentation
hooks that serve as our guardrails to improve student learning.

Challenge randomization. DOJO exposes an interface for running
setup code when a learner launches a challenge. We use this in a
large number of places in the Linux Luminarium, such as random-
izing the location of files that learners must find (e.g., to learn the
find command), data to filter (to practice grep), and so on.

We use two different forms of randomization: per-attempt (us-
ing a pseudorandom number generator) and per-learner (achieved
by hashing the /flag file, which is stable per learner-challenge
tuple), depending on the specific challenge. The latter allows us to
differentiate challenges between learners to minimize the spread of
written solutions (which reduce active learning to passive learning),
while the former increases challenge variety in general.

Yan Shoshitaishvili, Adam Doupé, and Connor Nelson

Shell instrumentation. We expanded the DOJO platform (and up-
streamed the resulting contribution) to enable hooking of a learner’s
.bashrc, allowing our challenges to customize learner shell ses-
sions.

We use this, combined with bash’s rich debug capabilities, to
enable significant observability for the challenge of the learner’s
attempts to solve it. For example, when teaching paths and the cd
command, we can directly detect (by tracking the PWD environment
variable) when a learner enters the correct directory. Furthermore,
by hooking each line entered into the shell, we can ensure that
learners properly use absolute paths (in challenges that aim to
teach them) versus relative paths (when the curriculum moves on
to that) or properly use file globbing, tab completion, and so on as
these concepts are taught.

Command hooking. We use the aforementioned shell instru-
mentation to set the learner’s PATH environment variable to allow
challenges to easily override commands, letting us inject guardrails
and feedback into the commands themselves.

For example, when we teach advanced usage of the tee com-
mand, our tee wrapper actually inspects the arguments to deter-
mine whether the learner is on the right path.

Error anticipation. We have observed learners making a large
number of mistakes when learning Linux. A common example is
case sensitivity: learners unfamiliar with Computer Science might
not understand that files and shell variables are case-sensitive. A
combination of our shell introspection, command hooking, and
mistake prediction allows us to preempt many of these errors.

For example, a challenge that asks the learner to use cat to
read the /flag file would also include a /FLAG file with content
informing the learner of the casing mistake, a CAT command doing
the same, a flag command explaining that the command they want
is cat, and a shell hook detecting the errant attempt to execute the
/flag file directly. Likewise, when teaching how to set environment
variables (e.g., NAME=VALUE), we include a VALUE command (to catch
the case where the learner does NAME= VALUE) and a NAME command
(to catch NAME = VALUE).

Naturally, predicting all such errors is impossible. To remedy
this, we monitor interactions with our environment and voiced
student frustrations on our online Discord community. As we no-
tice common mistakes made by learners, we augment the error
anticipation logic to catch these mistakes as well.

Integrity and robustness. Our curriculum involves some security-
relevant concepts and, once users learn these concepts, it becomes
difficult to prevent them from finding unintended solutions (and
thus potentially missing the pedagogical point of the challenge). We
expanded DOJO to try to head off such solutions. For example, we
use bash’s debug capabilities to hook and immediately terminate
subshells, as so:

trap '[[$BASH_SUBSHELL -gt @ 1] && exit' DEBUG

2.2 Capturing Flags

The D0OJO platform is inspired by “Capture The Flag” (CTF) com-
petitions, which are typically live cybersecurity events in which
participants must exploit hacking challenges (e.g., by exploiting
them) to retrieve a cryptographic “flag” token and submit it for

The Linux Luminarium: Learning Linux by Leveraging
Lightweight Labs and Ludicrous Lessons

points. These events are very popular in the cybersecurity commu-
nity, and have been observed to be effective tools in the educator’s
toolbox [7, 11, 14, 16, 18, 28].

Each challenge is essentially equivalent to an auto-grading script
that implicitly checks a learner’s solution (whether actively, such
as checking if the learner has cded into a specified directory, or
passively, by being written in a way that the user can only retrieve
the flag by solving the challenge). In an example of the former, the
first time paths are taught, the Linux Luminarium instruments the
shell to detect when a learner enters the correct directory, at which
point it prints the flag. For the latter, when we teach the chmod
command for changing file permissions, the learner must chmod
the flag file to read the flag.

In the pwn. college DOJO, these flags are tracked and aggregated
as the learner’s score, motivating learners to keep pushing the
boundaries of their knowledge.

2.3 The Curriculum

Our application of the PWN philosophy to Linux education re-
sulted in 108 challenges across 15 sub-modules. Each sub-module
consists of 3 to 13 challenges, and each challenge explores one
micro-concept, building up in aggregate to imbue the learner with
Linux knowledge.

Our curriculum starts out with challenges that use a heavily-
instrumented shell session to explain the concept of Linux com-
mands and arguments from a syntactic perspective (e.g., having the
user run toy commands for practice). The next module introduces
the Linux filesystem and the cd command to explore it. Each type of
path (absolute paths, “naked” (no . /) and non-naked relative paths),
is explored in its own challenge or series of challenges, minimizing
the concepts conveyed per challenge. The next module explores a
number of commands to help the learner start actually using the
command line (1s, etc.). Then the Linux Luminarium covers the
reading and search of documentation (using functionality of man,
help, and —help flags). After this, we cover a series of increasingly
complex topics such as file globbing, piping, setting and reading
shell variables, and manipulating data. Then aspects of the Linux op-
erating system itself are introduced: processes, permissions, users,
and scripts. Finally, the curriculum ends on a series of culminating
experiences, described below.

The PWN philosophy suggests that approaching concepts from
an adversarial/security mindset enables unique insights into those
concepts [18]. We struggled adopting this part of the philosophy
for much of the Linux Luminarium, as the concepts were simply
too introductory to even discuss security. However, toward the
end of the curriculum, after covering the topics described above,
opportunities begin to arise, and we are able to use a series of
security challenges to reinforce the concepts we’d previously taught.
Specifically, these are:

Cracking account passwords. To drive home the concept of users
and permissions, we have a series of challenges where learners must
crack passwords of users created by the challenge. This is a fairly
standard part of a Linux security curriculum but sets the stage for
more advanced challenges.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

PATH hijack. To convey how Linux finds programs to invoke, we
teach about the PATH variable and have the user practice its hi-
jacking to override common utilities and gain control of program
execution (to retrieve the /flag file).

.bashrc hijack. To explore implications of incorrect file permis-
sions, we have a series of challenges in which learners can hijack
other user accounts by exploiting unsafe permissions to hijack the
victim user’s .bashrc. This explores, through several challenges,
bad file (. bashrc) permissions, the implications of unsafe directory
permissions (e.g., world-writable home directory), and the effects
of unsafe handling of symbolic links. We observed, and learners
reported, that this improved both understanding of and passion for
the material.

Linux destruction. Mistakes, though we try to minimize them
throughout the rest of the Linux Luminarium, are often the best
teacher. Most Linux veterans have, at some point, deleted something
they did not mean to, overwhelmed their machine with errant
processes, and so on. Observing the teaching potential of this, we
created a series of challenges at the end of the curriculum in which
learners intentionally carry out these “mistakes” to destroy their
environment in various ways: rm -rf /, a fork bomb, and filling
the disk.

3 Related Work

Linux Luminarium is not the first attempt to create a platform
via which to teach Linux: other approaches have been proposed
and implemented by educators and enthusiasts alike. These Linux
education resources fall into two categories: interactive and non-
interactive. A plethora of non-interactive resources have been devel-
oped to teach Linux. These take the form of organized lessons [21],
textbooks [8, 13], video collections, and countless Massive Open On-
line Courses (MOOCs). All of these tend to take the form of video or
text lessons with suggested concepts for the learner to practice (e.g.,
“make a file and then find it using the find command”), lacking the
structured feedback of Linux Luminarium.

Interactive resources can be further split into offline and online
styles. In the former, the learner is presented with a virtual machine
to download or install, or assumed to already have a Linux envi-
ronment, and is encouraged to practice learned concepts in that
VM [1, 4, 9, 25]. Unfortunately, this is suboptimal for two reasons.
First, it presents a sort of chicken-and-egg problem: learners are
assumed to be proficient enough in computing to install virtual
machines, and in cases where they are not, cannot undertake the
lesson. Second, the possibility of instructor instrumentation and
measurement of success are extremely limited, a reason that, be-
yond first-stage Linux education, has recently driven education
platforms online [17].

Online platforms benefit from ease of access, but are complex
to implement for instructors and platform developers. A number
of browser-accessible Linux environments have been created for
non-educational purposes, typically as tech demos [3, 10], for use
in software development [20, 23], or for later-stage education [5, 6,
15, 17, 26, 27]. Several have been created to enable direct practice of
Linux concepts through a learner’s browser. This property is shared
with Linux Luminarium, though the specifics of our pedagogical
approach and materials differ.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

OverTheWire Bandit [19] implements a Linux learning platform
through a network-accessible virtual machine. Learners use a Se-
cure Shell (SSH) client to connect and tackle challenges, with suc-
cessful completion of a challenge culminating in the password for
the next level. Bandit lacks both the turnkey access (requiring learn-
ers to set up SSH) and instrumented challenge feedback features of
Linux Luminarium, and as a result its challenges take very large
leaps: the very basics of commandline usage span fewer than 10
challenges, throwing learners into the thick of things quickly.

linuxzoo [22] provides GUI and Command-Line access to student-
dedicated Virtual Machines via the browser. Unlike Linux Lumi-
narium, linuxzoo’s grading is done “on-demand”: when a learner
achieves the goal of a lesson, they click the Check button to have the
grading system check the state of the VM. This limits linuxzoo to
less granular lessons, typically requiring external reading material
to fill knowledge gaps, rather than the micro-concept approach of
the Linux Luminarium.

‘Webminal [29] provides a web-accessible Linux terminal backed by
a dedicated Linux instance and pairs this with community support
to help overcome hurdles. Unlike Linux Luminarium, Webminal
focuses on example-based learning: the learner is typically told what
to execute and explained what the results mean, with the actual
interaction mostly carried out to duplicate the lesson contents.
As shown by our survey, the challenge-based nature of the Linux
Luminarium is a critical part of learning.

uAssign [2] proposed a containerized, web-accessible Linux ter-
minal for Linux education. The authors focus predominantly on
scalability and integration, and other than supporting parameter-
ized randomization, do not discuss the design of the educational
material itself, which is not available online. To the best of our
knowledge, uAssign does not explore the granular lessons or the
instrumented challenge feedback enabled by the Linux Luminar-
ium.

TermAdventure [24] is a learner-hosted technique that instru-
ments a shell session to turn their sessions into a text adventure
game, letting them learn in the course of completing the game. The
authors have open-sourced the core code of the tool, but not the
implemented levels of the game, making it difficult to assess what
level of instrumentation, beyond the directory-changing detection
described in the paper, is possible. Conversely, the Linux Luminar-
ium is centrally-hosted (and turnkey-accessible), supports extensive
instrumentation, and provides open curricula for teaching most
concepts in early Linux learning.

Finally, the Linux Luminarium far from the first CTF-inspired edu-
cation platform [7, 11, 14, 16, 18, 28], but it is the first combining its
unique features to enable seamless learning of Linux for learners
around the world.

4 Impact and Results

We opened the Linux Luminarium to the world on May 1, 2024,
relying on word of mouth to spread awareness. We have continued
to add new challenges exploring new concepts over time, resulting
in 108 challenges across 15 sub-modules.

Yan Shoshitaishvili, Adam Doupé, and Connor Nelson

The usage has gradually increased over time. Until this paper’s
data cutoff of July 1, 2025, a total of 15,394 have solved 697,553
challenges, with June 2025 seeing 55,363 solves by 1,946 learners.

To understand the impact of Linux Luminarium on learners, we
carried out two surveys!: one for students at our University, where
we use the Linux Luminarium as a Linux primer for Computer
Science majors (mostly in their Junior year) and another for learners
from around the United States, beyond our university. Our surveys
included both Likert scale and free response questions. All questions
in both surveys were optional.

In analyzing the survey data, we identified a number of take-
aways that demonstrate the strengths, impact, and weaknesses of
the Linux Luminarium, which we detail below.

4.1 Learners Beyond our University

We also sent out a survey to learners who were not students at our
university and had engaged with the Linux Luminarium within the
last two months (so that their experience would be fresh in their
memory). Our IRB protocol limited us to respondents who resided
in the United States and were not students at our University. Over
60% of global Linux Luminarium users reside outside of the United
States, limiting our qualified respondents to 47.

In total, 47 learners responded to our survey. Of these, 1 was
a high school student?, 14 were undergraduate students, 8 were
graduate students, and 1 was in a vocational program, and 23 were
professionals.

Our survey included a number of Likert questions, which we
show (along with aggregated responses) in Figure 1. Additionally,
we asked them to (retroactively) rate their comfort level with certain
Linux concepts before and after their participation in the Linux
Luminarium. Finally, we asked free-response questions about their
biggest hurdles in learning Linux prior to the Linux Luminarium
and the biggest hurdle they faced in the Linux Luminarium. We
synthesize the results below.

There is a value in structured learning resources. In free-form
responses, the most common observation (11 responses) of the
biggest hurdle in attempts to learn Linux prior to the Linux Lu-
minarium was the lack of structure in existing Linux Learning
resources. None of these learners reported the same hurdle for the
Linux Luminarium itself, reflecting the success of the structured
approach we take to Linux education.

A turnkey, interactive Linux environment enables learning.
About half of our learners reported being hampered in prior at-
tempts at learning Linux by a lack of a readily-available Linux
environment, with the other half disagreeing (Q1). 7 learners men-
tioned this as their top hurdle in free-response questions. In free-
form responses, the two most common reasons for having been
hampered by the lack of available interactive environments were
an uncertainty about how to set up a system for learning and a fear
of accidentally destroying it with an errant command once set up.

Despite half of the respondents disagreeing with Q1, Q2 shows
overwhelming agreement that the Linux Luminarium’s web inter-
face helped learners start learning Linux.

'We reviewed the surveys with our institutions IRB and received an Exempt determi-
nation for both.
20ur study clarified that participants must be 18 years or older.

The Linux Luminarium: Learning Linux by Leveraging
Lightweight Labs and Ludicrous Lessons

M Strongly Disagree [Disagree

Not having an available Linux environment hampered prior attempts to learn Linux. (Q1)
The web browser Linux interface made it easy to start learning Linux. (Q2)

Neutral [l Agree

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

[l Strongly Agree

The challenges helped me learn Linux concepts. (Q3)

The gradual "ramp up” of challenges in the Linux Luminarium helped me learn. (Q4)
The challenge descriptions sufficiently prepared me for the challenges. (Q5)

The extra information printed in my shell session helped me learn. (Q6)

The extra information printed in my shell session helped me avoid errors. (Q7)

I needed to search out educational material besides the challenge descriptions. (Q8)
The discord helped me understand conceptual gaps left by the challenges. (Q9)

I would have given up without the discord. (Q10)

Generative Al helped me bridge gaps in approaching the Linux Luminarium. (Q11)
Generative Al alone could have taught me Linux as well as the Linux Luminarium. (Q12)
Destroying my Linux environment helped deepen my Linux understanding. (Q13)
Destroying my Linux environment increased my passion for Linux. (Q14)

Security scenario challenges helped deepen my Linux understanding. (Q15)

Earning flags motivated me to keep learning. (Q16)

The Linux Luminarium was fun. (Q17)

The Linux Luminarium has inspired me to keep learning Linux. (Q18)

I have used the Linux skills I've learned beyond the Linux Luminarium. (Q19)

|

-30 -20 -10 0 10 20 30

Figure 1: Likert survey questions and their responses by learners beyond our University. A total of 47 students completed the

survey. All questions were optional.

The gamified, challenge-based curriculum is beneficial for
both learning and motivation. Learners reacted overwhelmingly
positively both to the use of hands-on challenges in learning (Q3)
and the use of Capture The Flag-style “flags” as additional motiva-
tion to solve these challenges (Q15). No respondents disagreed with
either statement, and agreed that the Linux Luminarium was enjoy-
able (Q16) and inspiring for further learning (Q17). While this moti-
vational effect has long been observed in CTFs [7, 11, 14, 16, 18, 28],
we hope that reproducing this finding in even-earlier-stage educa-
tion settings will be useful to future educators.

5 free-form responses listed the lack of available challenge prob-
lems as the top hurdle in their pre-Linux Luminarium attempts to
learn Linux.

Guidance is good, but not perfect. Learners overwhelmingly
reported that challenge descriptions equipped them to approach
the challenges (Q4), but most still needed to search out additional
(off-site) materials beyond these descriptions (Q7). Additionally,
in free-form responses, 7 learners reported vague, confusing, ram-
bling, or incomplete problem descriptions as their biggest hurdle
in approaching the Linux Luminarium.

Beyond online documentation, modern learners also use addi-
tional interactive guidance via online communities (e.g., on learning-
dedicated Discord channels such as the one we created for Linux
Luminarium) or Generative Al (e.g., ChatGPT). We asked several
questions to measure the impact of these resources. Students re-
ported similar positive impact (more of them agreeing than dis-
agreeing) for both Discord (Q8) and AI (Q10), but disagreed with
both the assertion that the Discord help was critical (Q9) and that
Generative Al could replace the Linux Luminarium as a sole Linux
learning resource (Q11).

Instrumented correction and guidance text helps learners
learn. The Linux Luminarium’s shell session instrumentation was
extremely helpful, with no respondents to Q5 (for learning) and Q6
(for avoiding errors) disagreeing and almost universal agreement.
As Linux Luminarium is the only platform that provides this feature,
this points to its usefulness as a first-stage Linux learning platform.

Destruction can be constructive. While both Destructive (Q12)
and Security (Q14) challenges improved understanding of Linux
concepts, the Security challenges appeared to be more useful. Typ-
ically, the Security challenges involve the combination of more
Linux concepts (e.g., data processing to brute force a password and
the Linux user/group model) than Destructive challenges (e.g., rm
-rf /), so this makes sense, though we were pleased to see that the
latter remains useful as well.

The Linux Luminarium increases learner comfort with Linux.
We asked respondents to retroactively self-assess their comfort lev-
els with different aspects of Linux as they were before starting and
after completing the Linux Luminarium, on a scale from 0 (Very
Little Comfort) to 4 (Very High Comfort). The results are presented
in Figure 2. Participants spanned the whole range of assessments,
with the median assessment in each category being Moderate fa-
miliarity (2). Participants reported median improvements between
0.7 (for the GUI, which learners only incidentally use to access the
material) to 1.3 (for the Security Model, which we explicitly cover
with the material).

Threat to Validity: since both estimations are retrospective (e.g.,
learners estimate their pre-Linux Luminarium knowledge after com-
pleting the Linux Luminarium), learners might subconsciously un-
derestimate their Before knowledge or inflate the delta between Be-
fore and After because of a biased perception of self-improvement.

SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

Very Very
Little Little ~ Moderate High High

Filesystem Layout (Before)
Filesystem Layout (After)
Command Line (Before)
Command Line (After)

GUI (Before)

GUI (After)

System Administration (Before)

I

System Administration (After)
Security Model (Before)
Security Model (After)
Finding Docs (Before)
Finding Docs (After)

“

Comfort

Figure 2: Horizontal candlestick plot of self-assessed comfort
levels with different areas/concepts of Linux among learners
beyond our University on a scale from 0 (Very Little Comfort)
to 4 (Very High Comfort). Both the Before (starting the Linux
Luminarium) and After (completing the Linux Luminarium)
self-assessments were performed retroactively. Participants
reported median improvements between 0.7 (for the GUI,
which students only incidentally use during their learning)
to 1.3 (for the Security Model, which we explicitly cover).

Ideally, we would survey the users before they access the Linux
Luminarium, but this is not something that our platform currently
supports. Regardless, we present this part of our data for complete-
ness.

4.2 Learners at our University

The Linux Luminarium is a required module during the Introduction
to Cybersecurity course at our large R1 public University. At the
conclusion of every module, including the Linux Luminarium, we
invited students to complete a survey about their experience with
the material. Because these surveys exist after each module, they
are not Linux-specific, and so are structured differently than the
survey discussed earlier. Of the 658 students in the class, 405 filled
out the survey and consented to be included in this study?.
Students reported working an average of 11.23 hours to com-
plete the module. Additionally, students overwhelmingly agreed
that the Linux Luminarium was Educational (388 agreeing vs 27
disagreeing), Enjoyable (388 vs 49), and Engaging (360 vs 37), and
that the challenge descriptions helped students learn the material
(322 vs 24).
In free-form responses, students listed as positives, from most

frequently listed to least frequently listed, the following:

e The CTF-style challenge gamification.

o Gradual, step-by-step challenges that keep learners engaged

and reinforce concepts.
o Increased comfort with Linux over the course of the module.

3Consent or lack thereof had no impact on grades or other student metrics in the class.

Yan Shoshitaishvili, Adam Doupé, and Connor Nelson

o Available help from Discord, Generative Al, and shell instru-
mentation to fill the gaps left by the challenge descriptions.

o The quality of the challenge descriptions themselves.

o The ease of web accessibility of the Linux Luminarium envi-
ronment.

The negatives, from most frequently listed to least frequently listed
(omitting course-specific feedback such as Canvas organization,
etc.), were:

e Vague, confusing, rambling, or incomplete challenge descrip-
tions.

o Residual hard-to-bridge conceptual gaps between some of
the challenges, with data piping (between processes), file
globbing, symbolic links, and the security implications of
the PATH environment variable specifically mentioned.

e Overly-repetitive challenge ramps (e.g., too much practice
for concepts such as chmod).

Anecdotally, we found that the introduction of the Linux Lumi-
narium during the 2024-2025 academic year drastically improved
student understanding of Linux throughout the rest of the course.
Whereas prior iterations of this course would receive introductory
questions from students (e.g., about the Linux filesystem layout, the
Linux process model, etc.), we observed almost no such questions
in either semester that included the Linux Luminarium.

4.3 Community Involvement

Because the Linux Luminarium is openly available and open source,
and the material is intentionally very introductory, passionate learn-
ers are able to contribute to the project. Over the roughly 14 months
of its availability, we have received contributions from 15 distinct
individuals from the global community. These contributions ranged
from spelling and grammar fixes to entire sub-modules of content.
For example, the Linux Luminarium’s file permissions module was
initially contributed by a community member.

5 Conclusion

The Linux Luminarium is a novel, turnkey, challenge-based Linux
education platform that supercharges learners to become proficient
Linux users. Over the year of its open availability, the Linux Lu-
minarium has taught Linux to 15,394 learners, shepherding them
through solving 697,553 challenges. By surveying learners around
the country as well as at our University, we show that the Linux
Luminarium, and the techniques that underpin it, successfully drive
student learning. The Linux Luminarium is both openly available
on the internet for turnkey learning and open source to enable
reproducibility, learning, and ongoing research.

Acknowledgements. This material is based upon work supported
by the Defense Advanced Research Projects Agency (DARPA) un-
der Contract No. HR001124C0362 and by the Department of Navy
under award N00014-23-1-2563 issued by the Office of Naval Re-
search. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Defense Advanced Research
Projects Agency (DARPA) or the Office of Naval Research.

The Linux Luminarium: Learning Linux by Leveraging

Lightweight Labs and Ludicrous Lessons SIGCSE TS 2026, February 18-21, 2026, St. Louis, MO, USA

References

[1] Cisco Networking Academy. [n.d.]. Linux Unhatched. https://www.netacad.
com/courses/linux-unhatched?courseLang=en-US.

[2] Jacob Bailey and Craig Zilles. 2019. uassign: Scalable interactive activities for

teaching the unix terminal. In Proceedings of the 50th ACM technical symposium

on computer science education. 70-76.

Fabrice Bellard. [n. d.]. JSLinux. https://bellard.org/jslinux/.

Vincent Berry, Arnaud Castelltort, Chrysta Pelissier, Marion Rousseau, and

[15] Richard Wing Cheung Lui, Aiden Wen Yi Zhang, and Philip Tin Yun Lee. 2024. A
secure and scalable virtual lab platform for computing education. International
Journal of Information and Education Technology 14, 1 (2024), 59-64.

[16] Jelena Mirkovic, Aimee Tabor, Simon Woo, and Portia Pusey. 2015. Engaging

Novices in Cybersecurity Competitions: A Vision and Lessons Learned at ACM

Tapia 2015. In 2015 USENIX Summit on Gaming, Games, and Gamification in

Security Education (3GSE 15).

Connor Nelson and Yan Shoshitaishvili. 2024. DOJO: Applied Cybersecurity

=

[17

=

Chouki Tibermacine. 2022. Shellonyou: Learning by doing unix command line.
In Proceedings of the 27th ACM Conference on on Innovation and Technology in
Computer Science Education Vol. 1. 379-385.

Razvan Beuran, Dat Tang, Cuong Pham, Ken-ichi Chinen, Yasuo Tan, and Yoichi
Shinoda. 2018. Integrated framework for hands-on cybersecurity training:
CyTrONE. Computers & Security 78 (2018), 43-59.

Hack The Box. 2023. https://www.hackthebox.com/.

Kevin Chung and Julian Cohen. 2014. Learning Obstacles in the Capture The Flag
Model. In 2014 USENIX Summit on Gaming, Games, and Gamification in Security
Education (3GSE 14).

Paul Cobbaut et al. 2007. Linux Fundamentals. Dosegljivo: http://linuxtraining.
be/linuxfun. pdf.[Dostopano: 10. 2. 2019] (2007).

CodeAcademy. [n.d.]. Installing Linux Using a Virtual Machine. https://www.
codecademy.com/article/installing-linux-using-a-vm.

Copy. [n.d.]. v86. https://copy.sh/v86/.

Adrian Dabrowski, Markus Kammerstetter, Eduard Thamm, Edgar Weippl, and
Wolfgang Kastner. 2015. Leveraging Competitive Gamification for Sustainable
Fun and Profit in Security Education. In 2015 USENIX Summit on Gaming, Games,
and Gamification in Security Education (3GSE 15).

Edward Dillon, Krystal L Williams, Ashley Simone Pryor, Theodore Wimberly Jr,
Mariah McMichael, Abisola Mercy Arowolaju, Donald Bernard Davis, and
Toluwanimi Ayodele. 2024. Exploring the Impact of Exposing Command Line
Programming to Early CS Majors (An HBCU Case Study). In 2024 ASEE Annual
Conference & Exposition.

Machtelt Garrels. 2002. Introduction to Linux. A Hands on Guide. https://tldp.
org/LDP/intro-linux/html (2002).

Kees Leune and Salvatore J Petrilli Jr. 2017. Using Capture-the-Flag to Enhance
the Effectiveness of Cybersecurity Education. In Proceedings of the 18th Annual
Conference on Information Technology Education. 47-52.

Education In The Browser. In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education (SIGCSE).

Connor Nelson and Yan Shoshitaishvili. 2024. PWN The Learning Curve:
Education-First CTF Challenges. In Proceedings of the 55th ACM Technical Sym-
posium on Computer Science Education (SIGCSE).

OverTheWire. [n.d.]. Bandit. https://overthewire.org/wargames/bandit/.
Bobby Powers, John Vilk, and Emery D Berger. 2017. Browsix: Bridging the gap
between unix and the browser. ACM SIGPLAN Notices 52, 4 (2017), 253-266.
The Linux Journey Project. [n. d.]. Linux Journey. https://linuxjourney.com/.
Gordon Russel. [n. d.]. linuxzoo. https://linuxzoo.net/.

Rémi Sharrock, Lawrence Angrave, and Ella Hamonic. 2018. WebLinux: a scalable
in-browser and client-side Linux and IDE. In Proceedings of the Fifth Annual ACM
Conference on Learning at Scale. 1-2.

Marek Suppa, Ondrej Jariabka, Adrian Matejov, and Marek Nagy. 2021. Ter-
madventure: Interactively teaching unix command line, text adventure style. In
Proceedings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1. 108-114.

Valdemar Svéabensky, Jan Vykopal, Daniel Tovarniak, and Pavel Celeda. 2021.
Toolset for collecting shell commands and its application in hands-on cybersecu-
rity training. In 2021 IEEE Frontiers in Education Conference (FIE). IEEE, 1-9.
TryHackMe. 2023. https://tryhackme.com/.

Jan Vykopal, Radek Oslejsek, Pavel Celeda, Martin Vizvary, and Daniel Tovarnak.
2017. KYPO Cyber Range: Design and Use Cases. In Proceedings of the 12th
International Conference on Software Technologies - Volume 1: ICSOFT. SciTePress,
310-321.

Jan Vykopal, Valdemar Svabensky, and Ee-Chien Chang. 2020. Benefits and
Pitfalls of Using Capture the Flag Games in University Courses. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. 752-758.

[29] Webminal. [n.d.]. About. https://www.webminal.org/about/.

https://www.netacad.com/courses/linux-unhatched?courseLang=en-US
https://www.netacad.com/courses/linux-unhatched?courseLang=en-US
https://bellard.org/jslinux/
https://www.hackthebox.com/
https://www.codecademy.com/article/installing-linux-using-a-vm
https://www.codecademy.com/article/installing-linux-using-a-vm
https://copy.sh/v86/
https://overthewire.org/wargames/bandit/
https://linuxjourney.com/
https://linuxzoo.net/
https://tryhackme.com/
https://www.webminal.org/about/

	Abstract
	1 Introduction
	2 Design
	2.1 Instrumented Learning
	2.2 Capturing Flags
	2.3 The Curriculum

	3 Related Work
	4 Impact and Results
	4.1 Learners Beyond our University
	4.2 Learners at our University
	4.3 Community Involvement

	5 Conclusion
	References

